Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Delay lines that store quantum information are crucial for advancing quantum repeaters and hardware efficient quantum computers. Traditionally, they are realized as extended systems that support wave propagation but provide limited control over the propagating fields. Here, we introduce a parametrically addressed delay line for microwave photons that provides a high level of control over the stored pulses. By parametrically driving a three-wave mixing circuit element that is weakly hybridized with an ensemble of resonators, we engineer a spectral response that simulates that of a physical delay line, while providing fast control over the delay line’s properties. We demonstrate this novel degree of control by choosing which photon echo to emit, translating pulses in time, and even swapping two pulses, all with pulse energies on the order of a single photon. We also measure the noise added from our parametric interactions and find it is much less than one photon.more » « less
-
Abstract Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise.more » « less
-
Abstract Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms in the Hamiltonian. However, such predictions have not been realized because antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons that is analytically described by a unique Hamiltonian in which the relative importance of resonant and antiresonant interactions can be easily tuned and the latter can be made vastly dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the system’s ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.more » « less
-
Surface-enhanced Raman scattering (SERS) from gold and silver nanoparticles suspended in solution enables a more quantitative level of analysis relative to SERS from aggregated nanoparticles and roughened metal substrates. This is due to the more predictable and consistent near field enhancement regions created by isolated nanoparticles, and to averaging over the many nanoparticles that diffuse through the excitation beam during the measurement. However, we find that localized heating of the solution by the focused excitation leads to thermophoresis which alters the nanorod concentration in the focal volume and therefore impacts quantitative analysis. Since many phenomena may impact the Raman signal, we record both the Rayleigh and Raman scattering from gold nanoparticle solutions. This allows us to distinguish molecular processes from depletion of nanoparticles in the excitation beam. We observe that the concentration of nanorods can deplete to less than 50% of its original value over 100 second timescale, which are consistent with a thermophoretic effect driving nanoparticles from the beam spot. We also find that the particle motion drives convection within the sample cell that further contributes to signal instabilities.more » « less
An official website of the United States government
